WEKO3
アイテム
Représentation de la Géométrie non-euclidienne par un Modèle hé misphérique
https://kjunshin.repo.nii.ac.jp/records/465
https://kjunshin.repo.nii.ac.jp/records/4651c550b6f-242f-46dd-8391-9ff17cdf2cec
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Item type | 紀要論文 / Departmental Bulletin Paper(1) | |||||
---|---|---|---|---|---|---|
公開日 | 2020-08-04 | |||||
タイトル | ||||||
タイトル | Représentation de la Géométrie non-euclidienne par un Modèle hé misphérique | |||||
言語 | ||||||
言語 | fra | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 射影幾何学 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 非ユークリッド幾何学 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 平行線公理 | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | モデル | |||||
キーワード | ||||||
主題Scheme | Other | |||||
主題 | 数学史 | |||||
資源タイプ | ||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_6501 | |||||
資源タイプ | departmental bulletin paper | |||||
その他(別言語等)のタイトル | ||||||
その他のタイトル | 非ユークリッド幾何学の半球面モデル | |||||
著者 |
久木田, 英史
× 久木田, 英史 |
|||||
抄録 | ||||||
内容記述タイプ | Abstract | |||||
内容記述 | 十七世紀、デザルグが透視図法に想を得て「平行な二直線はそれぞれの直線の双方向の無限遠に位置するある理念的な点で交わる」という公理を要請した時、幾何学は古代ギリシャにおける創始者たちが敢えて回避してきた「無限」という問題圏へと開かれた。その二世紀後、三人の同時代人、ボヤイ、ロバチェフスキー、ガウスはそれぞれ独立に、実在する空間の規定と思念されてきたユークリッド幾何学における「平行線公理」―「与えれた直線と平行で(すなわち無限遠点で交わる)その直線上にない一点を通る直線は、ただ一つだけ存在す る」という命題を否定しても、ユークリッド幾何学と同様の合同変換に基づく、無矛盾な体系が構築されることを発見した。本論は「与えれた直線と平行でその直線上にない一点を通る直線が、複数存在する」ような、所謂「双曲幾何学」的「平面」の存在を半球面モデルとして可視化すると共に、「三角形の内角の和は二直角より小さい」など、この「平面」の主要な性質を半球面モデルの定義から導出することを目的とする。 |
|||||
書誌情報 |
国際人間学部紀要 en : International Human Studies 号 25, p. 49-70, 113, 発行日 2019-03-31 |
|||||
出版者 | ||||||
出版者 | 鹿児島純心女子大学国際人間学部 | |||||
ISSN | ||||||
収録物識別子タイプ | ISSN | |||||
収録物識別子 | 1880-1978 | |||||
書誌レコードID | ||||||
収録物識別子タイプ | NCID | |||||
収録物識別子 | AA12012192 |