Représentation de la Géométrie non-euclidienne par un Modèle hémisphérique

Eishi Kukita

1 Projection sphérique

Définition 1.1. Soit σ une sphère unité de centre O. Soit P un point fixe n'appartenant pas à σ . Quand on joint P à un point mobile X sur σ et désigne X' l'autre point d'intersection que X de la droite (PX) avec σ , on appelle *projection sphérique* de centre P l'application $\Pi_P : \sigma \to \sigma$ qui associe X à X', et *projeté* de X, l'image X' de X par Π_P . Quand (PX) est tangente à σ en X, on considère que Π_P associe X à X lui-même.

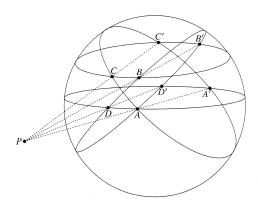
Définition 1.2. Soient A, B, C, D quatre points quelconques. Soient γ la raison AC/BC de la distance de A à C à celle de B à C, et δ la raison AD/BD de la distance de A à D à celle de B à D. Alors on appelle *raison composée* de C et D relativement à A et B la raison de γ à δ :

$$\frac{\gamma}{\delta} = \frac{AC}{BC} \cdot \frac{BD}{AD}.$$

On notera cette raison composée :

Théorème 1.1. Π_P conserve la raison composée de tous quatre points sur σ . **Démonstration.** Soient A, B, C, D quatre points sur σ , et A', B', C', D' leurs projetés respectifs par Π_P . On démontrera que [A'B', C'D'] = [AB, CD], c'est-dire :

$$\frac{A'C'}{B'C'} \cdot \frac{A'D'}{B'D'} = \frac{AC}{BC} \cdot \frac{AD}{BD}.$$



A, A', C, C' sont tous sur l'intersection du plan (PAC) avec σ , c'est-à-dire sur un certain cercle. D'où : $PA \cdot PA' = PC \cdot PC'$ et, les triangle PAC et PC'A' étant semblables, on a :

$$AC = \frac{PA}{PC'} \cdot A'C'.$$

Pareillement:

$$BC = \frac{PB}{PC'} \cdot B'C', \quad BD = \frac{PB}{PD'} \cdot B'D', \quad AD = \frac{PA}{PD'} \cdot A'D'.$$

Il en résulte :

$$\frac{AC}{BC} \cdot \frac{BD}{AD} = \frac{(PA/PC') \cdot A'C'}{(PB/PC') \cdot B'C'} \cdot \frac{(PB/PD') \cdot B'D'}{(PA/PD') \cdot A'D'} = \frac{A'C'}{B'C'} \cdot \frac{B'D'}{A'D'}.$$

Théorème 1.2. Les deux conditions suivantes sont équivalentes :

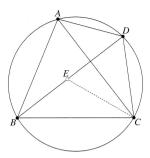
- (a) Quatre points A, B, C, D sont cocycliques;
- (b) Ils vérifient : [AD, BC] + [AB, DC] = 1.

Démonstration. D'abord on suppose (a) pour prouver l'égalité de (a) :

$$\frac{AB}{AC} \cdot \frac{DC}{DB} + \frac{AD}{AC} \cdot \frac{BC}{BD} = 1,$$

ou autrement:

$$AB \cdot CD + AD \cdot BC = AC \cdot BD. \tag{1}$$



Soit E le point sur la droite (BD), vérifiant : $\angle ACD = \angle BCE$. Les angles CAD et CBE interceptant le même arc CD, les triangles ACD et BCE sont semblables et AD/AC = BE/BC; d'où :

$$AD \cdot BC = AC \cdot BE$$
.

De ces triangles semblables, on a aussi : AC/BC = DC/EC. En plus : $\angle ACB = \angle DCE$. Les triangle ABC et DEC sont ainsi semblables et AB/AC = DE/DC; d'où :

$$AB \cdot CD = AC \cdot DE$$
.

En additionnant ces deux égalités membre à membre, on obtient :

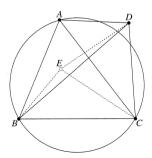
$$AB \cdot CD + AD \cdot BC = AC \cdot (BE + DE).$$
 (2)

B, D, E étant alignés par définition, BE + DE = BD; ce qui fait que le membre droit est égal à $AC \cdot BD$.

Quant à la proposition : (b) \Rightarrow (a), on démontrera sa contreposée : si A, B, C, D ne sont pas cocycliques, alors

$$AB \cdot CD + AD \cdot BC > AC \cdot BD.$$
 (3)

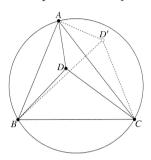
[I] Quand A, B, C, D sont coplanaires et le quadrangle ABCD est convexe.



52

Soit E le point intérieur à ce quadrangle tel que les triangles ACD et BCE sont semblables. La discussion du cas précédent qui conduit à (2) vaut pour ce cas-là aussi, tandis que, A, B, C, D n'étant pas cocycliques par hypothèse et $\angle DBC \neq \angle EBC$, B, D, E ne sont pas alignés. Alors dans le trangle BDE, on a : BE + DE > BD; ce qui fait que le membre droit de (2) est strictement supérieur à $AC \cdot BD$.

[II] Ouand A, B, C, D sont coplanaires et le quadrangle ABCD est concave.



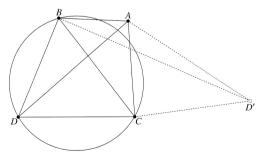
On pose que le quadrangle est concave au sommet D. Soit D' le point symétrique de D par rapport à la droite (AC). Comme dans le cas [I], on a :

$$AB \cdot CD' + AD' \cdot BC \ge AC \cdot BD'$$

(l'égalité vaut quand A, B, C, D' sont cocycliques). Par la symétrie AD' = AD et CD' = CD, tandis que BD' > BD, D' étant de l'autre côté de B par rapport à (AC); ce qui fait que :

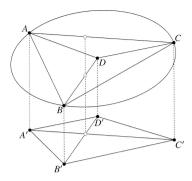
$$AB \cdot CD + AD \cdot BC = AB \cdot CD' + AD' \cdot BC \ge AC \cdot BD' > AC \cdot BD.$$

[III] Quand A, B, C, D sont coplaniares et les côtés [AD] et [BC] se croisent.



Soit D' le point symétrique de D par rapport à la droite (AC). Alors l'inégalité (3) vaut pour la même raison que dans le cas [II].

[IV] Quand A, B, C, D ne sont pas coplanaires.



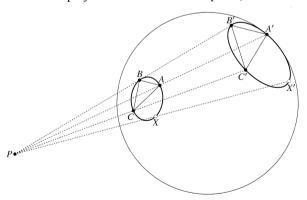
Soient A', B', C', D' les projetés orthogonaux respectifs de A, B, C, D sur un plan quelconque parallèle aux droites (AC) et (BD). On sait maintenant que, A', B', C', D' étant coplanaires :

$$A'B' \cdot C'D' + A'D' \cdot B'C' \ge A'C' \cdot B'D'$$

(l'égalité vaut quand A', B', C', D' sont cocycliques). Or la projection orthogonale réduit la longueur de tout segment, autant qu'il ne soit pas parallèle au plan sur lequel il est projeté; ce qui fait que :

$$AB \cdot CD + AD \cdot BC > A'B' \cdot C'D' + A'D' \cdot B'C' \ge A'C' \cdot B'D' = AC \cdot BD.$$

Théorème 1.3. Le projeté de tout cercle sur σ par Π_P est un cercle sur σ .



Démonstration. Soient A, B, C trois points distincts sur σ . Soit k le cercle circonscrit au triangle ABC. k, intersection du plan (ABC) avec σ , se situe sur σ ; alors pour tout point mobile X sur k, on a par le théorème 1.2:

$$[AX,\,BC]+[AB,\,XC]=1.$$

D'autre part, quand on pose que A', B', C', X' sont les projetés respectifs de A, B, C, D par Π_P , on a par le théorème 1.1 :

$$[AX, BC] = [A'X', B'C']$$
 et $[AB, XC] = [A'B', X'C']$.

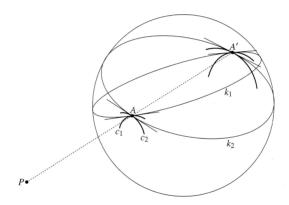
Ainsi:

$$[A'X', B'C'] + [A'B', X'C'] = 1;$$

ce qui signifie par le théorème 1.2 que le lieu de X' est le cercle circonscrit au triangle A'B'C', projeté du triangle ABC par Π_P .

Définition 1.3. Soit A un point sur σ . Soient c_1 , c_2 deux courbes sur σ qui se croisent en A, et t_1 , t_2 les tangentes respectives de c_1 et c_2 en A. Alors on définit l'angle que font c_1 et c_2 comme celui que font t_1 et t_2 en A.

Théorème 1.4. Π_P conserve la mesure de tout angle sur σ .



Démonstration. On continue à discuter dans le cadre de la défitinion 1.3. Soient A', c'_1 , c'_2 les projetés respectifs de A, c_1 , c_2 par Π_P . Soient k_1 , k_2 les cercles passant par A' et tangents respectivement à c_1 et à c_2 en A.

Le plan de k_1 et celui de k_2 contenant tous les deux le centre P de Π_P , les projetés de ces cercles par Π_P sont eux-mêmes; ce qui fait que'ils sont tangents respectivement à c'_1 et à c'_2 en A'.

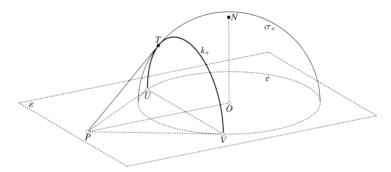
En A, c_1 et c_2 font un même angle que celui que font k_1 et k_2 . De même, en A', c'_1 et c'_2 font un même angle que celui que font k_1 et k_2 .

Or l'angle que font k_1 et k_2 en A et celui qu'ils font en A' sont symétriques par rapport au plan bissecteur de leur corde commune [AA']. Par conséquent, l'angle que font c_1 et c_2 en A est identique à celui que font c'_1 et c'_2 en A'.

2 ∇ Plan, ∇ droite et ∇ point

Définition 2.1. Soit ε un plan passant par le centre O de la sphère σ . Soit e le cercle qui est l'intersection de ε avec σ . Soit N le point d'intersection de σ avec une demi-droite issue de O et perpendiculaire à ε .

- On appelle $^{\triangledown}plan$ l'hémisphère de σ qui contient N (e n'y est pas inclus). On notera ce $^{\triangledown}plan : \sigma_+$.
- On appelle ∇ droite tout demi-cercle k_+ qui soit l'intersection de σ_+ avec un plan perpendiculaire à ε .
- On appelle $\nabla point$ tout point sur σ_+ .



Remarque 2.1. Conformément à la définition 1.3, on définit l'[¬]angle que font deux [¬]droites comme celui que font leurs tangentes en leur [¬]point d'intersection.

Remarque 2.2. Soit P un point sur ε . Soient U, V les points de contacts de e avec ses deux tangentes issues de P. La droite (OP) étant la bissectrice perpendiculaire de la corde [UV], quand on tourne e autour de (OP), e décrit σ , dont σ_+ est une moitié, et [UV], un cercle k, dont k_+ est une moitié. La droite (PT) qui joint P à un point quelconque T sur k_+ est alors tangente à σ_+ en T. Quand k passe par N, on considère que P est un point à l'infini de ε . On appelle P $\nabla p \delta le$ de k_+ , et k_+ $\nabla p olaire$ de P, par rapport à σ_+ .

Définition 2.2. On considère e comme la $^{\triangledown}$ droite à l'infini du $^{\triangledown}$ plan σ_+ ; U et V, points d'intersections de k_+ avec e, comme les $^{\triangledown}$ points à l'infini de la $^{\triangledown}$ doite k_+ . Autrement dit, on considère que toute $^{\triangledown}$ droite passant par U ou V est $^{\triangledown}$ parallèle à k_+ .

3 [∀]Réflexion

Remarque 3.1. Dans le plan euclidien, la congruence comprend trois sortes de transformation; la réflexion, la rotation et la translation, dont les deux dernières

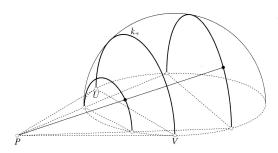
peuvent s'exprimer par un produit de plusieurs réflexions.

- Concernant la translation T de vecteur \overrightarrow{AB} , on mème deux droites quelconque l_1 et l_2 perpendiculaires à la droite (AB), en telle façon que leur distance soit égale à AB/2. Quand on nomme S_1 et S_2 les réflexions respectivement par rapport à l_1 et l_2 , on a : $T = S_2 \circ S_1$.
- Concernant la rotation R de centre O, d'angle θ , on mème deux droites quelconque l_1 et l_2 passant par O, en telle façon que l'angle qu'elles font mesure $\theta/2$. Quand on nomme S_1 et S_2 les réflexions respectivement par rapport à l_1 et l_2 , on a : $R = S_2 \circ S_1$.
- Soient ABC, A'B'C' deux triangles coplanaires, congrus et distincts. On déplace ABC, d'abord en $A'B_1C_1$ par la translation de vecteur $\overrightarrow{AA'}$, ensuite en $A'B_2C_2$ par la rotation de centre A', d'angle égal à $\angle B_1A'B'$. Alors ou bien les triangles $A'B_2C_2$ et A'B'C' se superposent, ou bien ils sont symétriques par rapport à la droite (A'B'). Dans le dernier cas, ils se superposent par la réflexion relativement à leur côté commun (A'B'). Dans le plan euclidien, tout déplacement peut donc s'exprimer par un produit au maximum de cinq réflexions.

Voici une transformation élémentaire du $^{\triangledown}$ plan σ_+ , qui correspond à la réflexion du plan euclidien.

Définition 3.1. Soit k_+ une $^{\triangledown}$ droite sur σ_+ . Soit P le $^{\triangledown}$ pôle de k_+ par rapport à σ_+ . Alors on appelle $^{\triangledown}$ réflexion par rapport à k_+ la projection sphérique Π_P au sens défini dans la définition 1.1; $^{\triangledown}$ reflété, le projeté par Π_P entendue comme $^{\triangledown}$ réflexion.

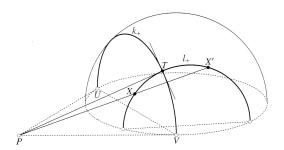
Théorème 3.1. Le [¬]reflété de toute [¬]droite est une [¬]droite.



Démonstration. Par la définition 1.1, une $^{\triangledown}$ droite est un demi-cercle perpendiculaire à e. Or la projection sphérique transforme tout cercle sur σ en un cercle sur σ par le théorème 1.3. En plus, elle garde la perpendicularité par le théorème 1.4. Donc le reflété d'un demi-cercle perpendiculaire à e est un demi-cercle perpendiculaire à e.

Théorème 3.2. La ∇ réflexion Π_P par rapport à k_+ a les propriétés suivantes :

- (a) Pour tout $^{\nabla}$ point T sur k_+ , on a : $\Pi_P(T) = T$;
- (b) Pour tout $^{\triangledown}$ point X on a : $(\Pi_P \circ \Pi_P)(X) = X$;
- (c) Quand on pose que $X' = \prod_P(X)$, la $^{\triangledown}$ droite (XX') est $^{\triangledown}$ perpendiculaire à k_+ .



Démonstration. (a) On a observé dans la remarque 2.2 que la droite (PT) est tangente à σ_+ en T. Alors, par la définition 1.1, le reflété de T par Π_P est luimême.

(b) Soit l_+ le demi-cercle (XX'). Le plan de l_+ contenant P, le $^{\nabla}$ reflété de l_+ par Π_P est lui-même. Par la définition 1.1, toute sécante de l_+ issue de P a deux points d'intersection X et X', dont l'un a l'autre pour son image par Π_P . Ainsi :

$$(\Pi_P \circ \Pi_P)(X) = \Pi_P(\Pi_P(X)) = \Pi_P(X') = X.$$

(c) Soit T le point d'intersection de k_+ et l_+ . La droite (PT) est tangente à l_+ en T. D'autre part, comme on l'a observé dans la remarque 2.2, elle est une génératrice d'un cône droit, dont P est le sommet et k_+ une moitié de la base. Elle est donc perpendiculaire à la tangente en T à cette base, et ainsi à k_+ .

4 [▽]Longueur du [▽]segment et [▽]mesure de l'[▽]angle

Définition 4.1. Soit k_+ une $^{\triangledown}$ droite, qui a U, V pour $^{\triangledown}$ points à l'infini. Soient A, B deux $^{\triangledown}$ points sur k_+ . Alors on définit la longueur du $^{\triangledown}$ segment [AB], ou la $^{\triangledown}$ distance des deux $^{\triangledown}$ points A et B, comme :

$$\overline{AB} = k \log[UV, AB] = k \log\left(\frac{UA}{VA} \cdot \frac{VB}{UB}\right)$$
 (k: constante).

Théorème 4.1. Pour tous ∇ points A, B, C sur toute droite k_+ , on a:

$$\overline{AB} + \overline{BC} = \overline{AC}.$$

Démonstration. On pose que k_+ a U, V pour ∇ points à l'infini. Alors

$$\begin{split} \overline{AB} + \overline{BC} &= k \log[UV, AB] + k \log[UV, BC] \\ &= k \log\left(\frac{UA}{VA} \cdot \frac{VB}{UB}\right) + k \log\left(\frac{UB}{VB} \cdot \frac{VC}{UC}\right) \\ &= k \log\left(\frac{UA}{VA} \cdot \frac{VB}{UB} \cdot \frac{UB}{VB} \cdot \frac{VC}{UC}\right) \\ &= k \log\left(\frac{UA}{VA} \cdot \frac{VC}{UC}\right) = k \log[UV, AC] = \overline{AC}. \end{split}$$

Théorème 4.2. La [¬]réflexion conserve la [¬]longueur de tout [¬]segment.

Démonstration. Ce qui est évident par le théorème 1.1 et la définition 4.1. □

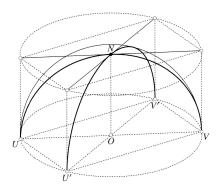
Théorème 4.3. La [¬]réflexion conserve la [¬]mesure de tout [¬]angle.

Démonstration. Ce qui est évident par la remarque 2.1 et le théorème 1.4. □

Théorème 4.4. Soient U, V, U', V' quatre points sur e. Soit θ la mesure de l'angle que font les deux ∇ droites (UV) et (U'V'). Alors on a :

$$\tan\frac{\theta}{2} = \sqrt{[U'V', UV]}.$$

Démonstration. Sans perte de généralité, on peut supposer que les deux $^{\triangledown}$ droites se croisent en N, puisque toute transformation de σ_+ par la $^{\triangledown}$ réflexion conserve la $^{\triangledown}$ longueur de tout $^{\triangledown}$ segment et la $^{\triangledown}$ mesure de tout $^{\triangledown}$ angle. Leurs tangentes en N étant toutes deux parallèles à ε , θ est égale à la mesure de l'angle que font les deux diamètres [UV] et [U'V] du cercle e.



Alors:

$$\angle UVU' = \frac{UOU'}{2} = \frac{\theta}{2}$$
 et $\angle VUV' = \frac{VOV'}{2} = \frac{\theta}{2}$,

et ainsi:

$$\tan \frac{\theta}{2} = \frac{U'U}{U'V}$$
 et $\tan \frac{\theta}{2} = \frac{V'V}{V'U}$.

En multipliant ces deux égalités membre à membre, on obtient :

$$\tan^2 \frac{\theta}{2} = \frac{U'U}{U'V} \cdot \frac{V'V}{V'U} = [U'V', UV];$$

ce qui est la conclusion.

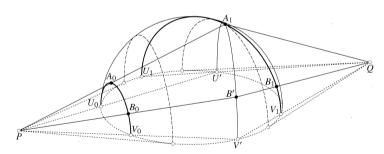
5 En quoi ce modèle est-il non-euclidien?

Définition 5.1. On appelle $^{\triangledown}$ congruence ou $^{\triangledown}$ déplacement toute transformation de σ_+ qui conserve la $^{\triangledown}$ longueur du $^{\triangledown}$ segment et la $^{\triangledown}$ mesure de l' $^{\triangledown}$ angle.

Remarque 5.1. La [¬]réflexion est une [¬]congruence par les théorèmes 4.2 et 4.3.

Théorème 5.1. Toute [¬]congruence peut s'exprimer par un produit de plusieurs [¬]réflexions.

Démonstration. Soient A_0 un $^{\triangledown}$ point quelconque sur une $^{\triangledown}$ droite quelconque (U_0V_0) , et A_1 un $^{\triangledown}$ point quelconque sur une $^{\triangledown}$ droite quelconque (U_1V_1) . On montrera l'existence des $^{\triangledown}$ réflexions dont le produit $^{\triangledown}$ déplace tout $^{\triangledown}$ segment $[A_0B_0]$ sur (U_0V_0) en $[A_1B_1]$ sur (U_1V_1) .



Soit P le point d'intersection de la droite (A_0A_1) avec ε . On suppose que la $^{\triangledown}$ réflexion par rapport à la $^{\triangledown}$ polaire de P, à sovoir Π_P , associe U_0 , V_0 , B_0 respectivement à U', V', B'. Par le théorème 3.1, A_1 et B' se trouvent sur la droite (U'V').

Soit Q le point d'intersection de deux droites (U_1U') et (V_1V') . On suppose que la ∇ réflexion par rapport à la ∇ polaire de Q, à savoir Π_Q , associe B' à B_0 . Π_Q

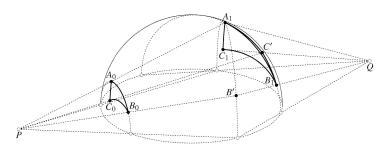
60 Eishi Kukita

 ∇ reflète (U'V') en (U_1V_1) , sur laquelle se trouve A_1 et B_1 . Ainsi :

$$\Pi_{\mathcal{Q}} \circ \Pi_{P} : \begin{pmatrix} U_0 \\ V_0 \\ A_0 \\ B_0 \end{pmatrix} \mapsto \begin{cases} U_1 \\ V_1 \\ A_1 \\ B_1 \end{cases}.$$

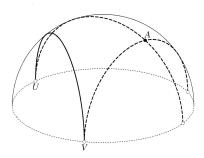
En plus, chacune des $^{\triangledown}$ réflexions Π_P et Π_Q conservant la $^{\triangledown}$ longueur du $^{\triangledown}$ segment et la $^{\triangledown}$ mesure de l' $^{\triangledown}$ angle, leur produit $\Pi_Q \circ \Pi_P$ le fait lui-aussi.

Remarque 5.2. La figure ci-dessous montre le $^{\triangledown}$ déplacement des $^{\triangledown}$ triangles congrus : $A_0B_0C_0 \mapsto A_1B_1C_1$, selon la méthode du théorème 5.1. A_1B_1C' , $^{\triangledown}$ reflété de $A_1B_1C_1$ par rapport au (A_1B_1) , est aussi congru à $A_0B_0C_0$.



Remarque 5.3. Jusqu'ici on a construit une axiomatique, analogue à la géométrie euclidienne en ceci qu'elle est fondé sur la notion de $^{\triangledown}$ congruence. Par contre, le théorème suivant contredit l'« axiome des parallèles » de la géométrie euclidienne, selon lequel : « Pour toute droite l et tout point P qui ne soit pas sur l, il existe une et une seule droite passant par P et parallèle à l. »

Théorème 5.2. Pour toute $^{\triangledown}$ droite k_+ et tout $^{\triangledown}$ point A qui ne soit pas sur k_+ , il existe plusieurs $^{\triangledown}$ droites passant par A et $^{\triangledown}$ parallèles à k_+ .

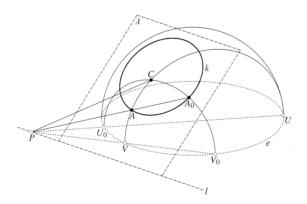


Démonstration. On pose que k_+ a U, V pour ∇ points à l'infini. Alors par la définition 2.2, les ∇ droites qui joignent A soit à U, soit à V, sont toutes deux ∇ parallèles à (UV).

6 Cercles sur σ_+

Remarque 6.1. Selon la définition 2.1, tout demi-cercle, qui soit l'intersection de σ_+ avec un plan perpendiculaire à ε , est une $^{\triangledown}$ droite. Dans ce chapitre, on examinera ce que signifient d'autres sortes du cercle sur σ_+ .

Théorème 6.1. Soit l une droite sur ε qui ne soit pas sécante à e. Soit λ un plan mobile qui tourne autour de l. Soit C le point de contact de λ avec σ_+ , quand λ est tangent à σ_+ . Soit k tout cercle qui soit l'intersection de λ avec σ_+ , quand λ est sécant à σ_+ . Alors la ∇ distance de C à tout ∇ point A sur k est constante.



Démonstration. On fixe un $^{\triangledown}$ point A_0 sur k et mène la $^{\triangledown}$ droite (CA_0) , qui ait U_0 , V_0 pour $^{\triangledown}$ points à l'infini. Soit P un point mobile sur l. Soient U, V les reflétés respectifs de U_0 , V_0 par la $^{\triangledown}$ réflexion relativement à la $^{\triangledown}$ polaire de P, à savoir Π_P .

- La droite (*PC*) étant tangente à σ_+ en *C*, on a : $\Pi_P(C) = C$.
- P et k étant coplanaires, on a : $\Pi_P(k) = k$. A_0 , ∇ point d'intersection de k avec (U_0V_0) , a pour reflété par Π_P le ∇ point d'intersection de k avec (UV), que l'on désigne A. Avec le mouvement de P sur l, A décrit k.

Ainsi pour tout P on a par le théorème 1.1:

$$\Pi_P: \begin{array}{c} U_0 \\ V_0 \\ C \\ A_0 \end{array} \longmapsto \begin{cases} U \\ V \\ C \\ A \end{cases} \Rightarrow [U_0V_0, CA_0] = [UV, CA],$$

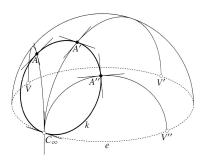
62 Eishi Kukita

c'est-à-dire, par la définition $4.1 : \overline{CA_0} = \overline{CA}$.

Remarque 6.2. Quand on admet pour l la droite à l'infini de ε , k peut être parallèle à ε .

Remarque 6.3. k, qui est l'ensemble des $^{\triangledown}$ points dont la $^{\triangledown}$ distance au $^{\triangledown}$ point C est constante, peut s'entendre comme un $^{\triangledown}$ cercle de $^{\triangledown}$ centre C.

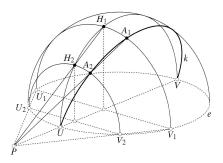
Théorème 6.2. Soit C_{∞} un point sur e. Alors tout cercle k sur σ_+ tangent à e en C_{∞} est perpendiculaire à toute ∇ droite qui ait C_{∞} pour point à l'infini.



Démonstration. Soient V un point sur e distinct de C_{∞} , et A le $^{\triangledown}$ point d'intersection de k avec la $^{\triangledown}$ droite $(C_{\infty}V)$. Par la définition 2.1, cette dernière est perpendiculaire à e, donc à k aussi, en C_{∞} . Alors la symétrie du cercle fait que k est perpendiculaire à $(C_{\infty}V)$ aussi en A.

Remarque 6.4. Quand la droite l du théorème 6.1 est tangente à e en C_{∞} , on a le cercle k du théorème 6.2. Dans ce cas-là, k peut être considéré comme un $^{\nabla}$ cercle qui a pour $^{\nabla}$ centre un $^{\nabla}$ point à l'infini et dont le $^{\nabla}$ rayon est infiniment grand.

Théorème 6.3. Soit k un arc de cercle sur σ_+ qui n'est pas perpendiculaire à ε . Soienr U, V les points d'intersection de k avec e. Alors la ∇ distance entre k et la ∇ droite (UV) est constante.



Démonstration. Sans perte de généralité, on peut supposer que la corde [UV] est un diamètre de e. Soit $[U_1V_1]$ et $[U_2V_2]$ deux cordes de e perpendiculaires à [UV]. Alors les $^{\triangledown}$ droites (U_1V_1) et (U_2V_2) sont toutes deux $^{\triangledown}$ perpendiculaires à la $^{\triangledown}$ droite (UV).

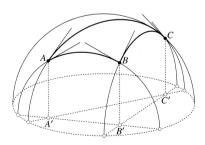
On pose que (U_1V_1) croise k et (UV) respectivement en A_1 et H_1 , et (U_2V_2) , en A_2 et H_2 ; et que les deux droites sur ε , (U_1U_2) et (V_1V_2) , se croisent en P. Alors la ∇ réflexion Π_P associe U_1 , V_1 , A_1 , H_1 respectivement à U_2 , V_2 , A_2 , H_2 . Ainsi, par le théorème 4.2, on a : $\overline{A_1H_1} = \overline{A_2H_2}$.

Remarque 6.5. Voici en résumé ce que signifie chacun des cercles ou arcs k sur σ_+ :

- Quand k rencontre e en deux points,
 - k est un ∇ cercle, s'il est perpendiculaire à ε ;
 - k est une certaine ligne dont la ∇ distance à une ∇ droite soit constante, s'il n'est pas perpendiculaire à ε ;
- Quand k touche e en un point, k est un ∇ cercle qui a pour ∇ centre un ∇ point à l'infini et dont le ∇ rayon est infiniment grand;
- Quand k n'a pas de point commun avec e, k est un ∇ cercle qui a pour centre un ∇ point ordinaire.

7 ¬Angles intérieurs du ¬triangle

Théorème 7.1. Dans tout triangle, la somme des trois $^{\nabla}$ angles intérieurs est strictement inférieure à deux rectangles.

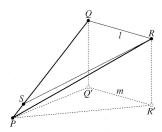


Démonstration. Soient α , β , γ les mesures respectives des trois $^{\triangledown}$ angles intérieurs des $^{\triangledown}$ sommets A, B, C du $^{\triangledown}$ triangle ABC, et α' , β' , γ' celles des trois angles intérieurs des sommets A', B', C' du triangle A'B'C', projeté orthogonal de ABC sur ε . On démontrera que :

$$\alpha' + \beta' + \gamma' > \alpha + \beta + \gamma. \tag{1}$$

64 Eishi Kukita

[I] Soient l, m deux droites parallèles. Soient P un point qui n'est sur aucune de ces deux droites; Q le projeté orthogonal de P sur l; R un point distinct de Q sur l; Q', R' les projetés orthogonaux respectifs de Q, R sur m. On pose que $\angle QPR = \theta$ et $\angle Q'PR' = \theta'$; ces deux angles sont évidemment aigus.



PQQ' étant un triangle rectangle qui a [PQ] pour hypoténuse, on a : PQ > PQ'. On fixe le point S sur [PQ], vérifiant : SQ = PQ'. Les triangles SQR et PQ'R' étant congrus :

$$\theta' = \angle O'PR' = \angle OSR = \angle SPR + \angle PRS = \theta + \angle PRS > \theta.$$

Autrement dit : la mesure de tout angle aigu est moins grande que celle de son projeté orthogonal. Quand le triangle *ABC* est acutangle, on a donc :

$$\alpha' > \alpha$$
, $\beta' > \beta$, $\gamma' > \gamma$.

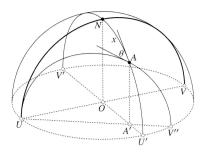
En additionnant ces trois inégalités membre à membre, on obtient l'inégalité (1).

[II] Quand le triangle ABC n'est pas acutangle, on pose que $\alpha \geq \pi/2$, et $^{\triangledown}$ déplace le $^{\triangledown}$ triangle en telle façon que le $^{\triangledown}$ sommet A coïncide avec N. Alors les tangentes à deux $^{\triangledown}$ côtés en A sont toutes deux parallles à ε , et ainsi : $\alpha' = \alpha$. Quant aux autres sommets, dont les angles intérieurs sont tous deux aigus, on a : $\beta' > \beta$ et $\gamma' > \gamma$; et par conséquent l'inégalité (1).

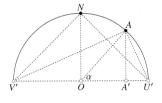
8 [▽]Angle de la [▽]parallèle

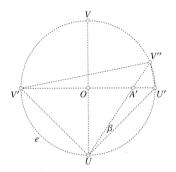
Théorème 8.1. Soit (UV) une $^{\triangledown}$ droite qui a U, V pour $^{\triangledown}$ points à l'infini. Soient A un $^{\triangledown}$ point qui n'est pas sur (UV), et H le $^{\triangledown}$ point sur (UV) tel que la $^{\triangledown}$ droite (AH) est perpendiculaire à (UV). Quand on note $\theta(x)$ la $^{\triangledown}$ mesure de l' $^{\triangledown}$ angle UAH en fonction de $x = \overline{HA}$, on a :

$$\tan \frac{\theta(x)}{2} = e^{-x/k}$$
 (k: constante). (1)



Démonstration. Sans perte de généralité, on peut supposer que H coïncide avec N. Soient U', V' les $^{\triangledown}$ points à l'infini de la $^{\triangledown}$ droite (NA); A' le projeté orthogonal de A sur ε ; V'' l'autre point d'intersection que U de la droite (UA') avec e.





On écrit α la mseure de l'angle au centre $\angle AOA' = \angle AOU'$ du demi-cercle U'NV'; β , celle de l'angle inscrit $\angle U'UV''$ du cercle e. Alors par la définition 4.1 :

$$x = \overline{NA} = k \log \left(\frac{U'N}{V'N} \cdot \frac{V'A'}{U'A'} \right) = k \log \frac{V'A'}{U'A'} = k \log \cot \frac{\alpha}{2}, \tag{2}$$

et

$$OA' = \cos \alpha. \tag{3}$$

Quant à θ , par le théorème 4.4 :

$$\tan\frac{\theta}{2} = \sqrt{\frac{V'U}{U'U} \cdot \frac{U'V''}{V'V''}} = \sqrt{\frac{U'V''}{V'V''}},$$

ce qui fait que :

$$\tan\beta = \tan\angle U'UV'' = \tan\angle U'V'V'' = \frac{U'V''}{V'V''} = \tan^2\frac{\theta}{2}.$$

D'autre part:

$$OA' = \tan \angle A'UO = \tan\left(\frac{\pi}{4} - \beta\right) = \frac{1 - \tan\beta}{1 + \tan\beta}$$

$$= \frac{1 - \tan^2(\theta/2)}{1 + \tan^2(\theta/2)} = \cos^2\frac{\theta}{2} - \sin^2\frac{\theta}{2} = \cos\theta.$$
(4)

De (3) et (4), on tire : $\alpha = \theta$; ainsi, en revenant à (2) :

$$x = k \log \cot \frac{\theta}{2}$$
, c'est-à-dire $\cot \frac{\theta}{2} = e^{x/k}$;

ce qui est la conclusion.

Remarque 8.1. On appelle $\theta(x)$ \forall angle de la \forall parallèle. Dans la géométrie euclidienne, $\theta(x)$ étant rectangle,

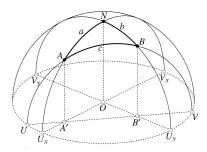
$$e^{-x/k} = \tan \frac{\pi}{4} = 1 = e^0;$$

ce qui est vrai pour tout x; ainsi k est infiniment grand.

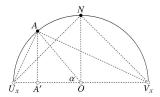
9 Trois [▽]côtés du [▽]triangle rectangle

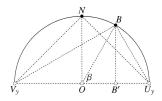
Théorème 9.1. Soient a, b les $^{\triangledown}$ longueurs respectives des deux $^{\triangledown}$ côtés adjacents à $1'^{\triangledown}$ angle droit d'un $^{\triangledown}$ triangle rectangle; c celle de $1'^{\triangledown}$ hypoténuse de ce dernier. Alors :

$$\sin \theta(a) \sin \theta(b) = \sin \theta(c). \tag{1}$$



Démonstration. Sans perte de généralité, on peut supposer que l' $^{\triangledown}$ angle droit du $^{\triangledown}$ rectangle se situe en N. Soient (U_xV_x) , (U_yV_y) deux $^{\triangledown}$ droites perpendiculaires qui se croisent en N. Soient A un $^{\triangledown}$ point sur (U_xV_x) , vérifiant : $\overline{NA} = a$; B un $^{\triangledown}$ point sur (U_yV_y) , vérifiant : $\overline{NB} = b$; A', B' les projetés orthogonaux respectifs de A, B sur ε ; U, V les points d'intersection de la droite (AB) avec e.

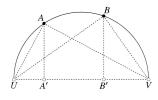


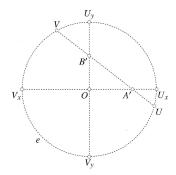


On écrit α la mseure de l'angle au centre $\angle AOA' = \angle AOU_x$ du demi-cercle U_xNV_x ; β celle de l'angle au centre $\angle BOB' = BOU_y$ du demi-cercle U_yNV_y . Alors par la définition 4.1 :

$$a = \overline{NA} = k \log \left(\frac{U_x N}{V_x N} \cdot \frac{V_x A}{U_x A} \right) = k \log \frac{V_x A}{U_x A} = k \log \cot \frac{\alpha}{2},$$

$$b = \overline{NB} = k \log \left(\frac{U_y N}{V_y N} \cdot \frac{V_y B}{U_y B} \right) = k \log \frac{V_y B}{U_y B} = k \log \cot \frac{\beta}{2}.$$
(2)





D'autre part, avec la similitude des triangles dans le demi-cercle *UABV* :

$$\begin{cases} UA^2 = UA' \cdot UV \\ UB^2 = UB' \cdot UV \end{cases} \quad \text{et} \quad \begin{cases} VA^2 = VA' \cdot UV \\ VB^2 = VB' \cdot UV \end{cases} ;$$

ainsi:

$$c = \overline{AB} = k \log \left(\frac{UA}{VA} \cdot \frac{VB}{UB} \right) = k \log \sqrt{\frac{UA'}{VA'} \cdot \frac{VB'}{UB'}}.$$
 (3)

On calcule l'intérieur de la racine carée, en cosidérant que les droites (U_xV_x) et (U_yV_y) sur ε sont respectivement l'axe des abscisses et celui des ordonnées dans le cadre des coordonnées cartésiennes, et que e est le cercle unité, représenté par l'équation :

$$x^2 + y^2 = 1.$$

68 Eishi Kukita

Étant données les coordonnées $A(\cos \alpha, 0)$ et $B(0, \sin \beta)$, la droite (AB) se représente avec un paramètre t:

$$\begin{cases} x = pt \\ y = q(1-t) \end{cases} (p = \cos \alpha, \ q = \cos \beta);$$

alors l'équation de e s'écrit :

$$(p^2 + q^2)t^2 - 2q^2t + (q^2 - 1) = 0.$$

On écrit t_u , t_v les solutions de cette équation. Alors :

$$t_u, t_v = \frac{q^2 \pm \sqrt{p^2 + q^2 - p^2 q^2}}{p^2 + q^2}, \quad t_u t_v = \frac{q^2 - 1}{p^2 + q^2},$$

et les coordonnés de U, V, A', B' sur (UV) sont respectivement $t_u, t_v, 1, 0$. Ainsi :

$$\begin{split} \frac{UA}{VA} \cdot \frac{VB}{UB} &= \frac{1 - t_u}{1 - t_v} \cdot \frac{0 - t_v}{0 - t_u} = \frac{t_v - t_u t_v}{t_u - t_u t_v} \\ &= \frac{q^2 - \sqrt{p^2 + q^2 - p^2 q^2} - \left(q^2 - 1\right)}{q^2 + \sqrt{p^2 + q^2 - p^2 q^2} - \left(q^2 - 1\right)} = \frac{1 - \sqrt{p^2 + q^2 - p^2 q^2}}{1 + \sqrt{p^2 + q^2 - p^2 q^2}} \\ &= \frac{\left(1 - \sqrt{p^2 + q^2 - p^2 q^2}\right)^2}{1 - \left(p^2 + q^2 - p^2 q^2\right)} = \frac{\left(1 - \sqrt{1 - \left(1 - p^2\right)\left(1 - q^2\right)}\right)^2}{\left(1 - p^2\right)\left(1 - q^2\right)} \\ &= \frac{\left(1 - \sqrt{1 - \sin^2\alpha\sin^2\beta}\right)^2}{\sin^2\alpha\sin^2\beta} \; ; \end{split}$$

de là, en revenant à (3):

$$c = k \log \sqrt{\frac{UA'}{UB'} \cdot \frac{VB'}{VA'}} = k \log \frac{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta};$$

c s'écrit d'ailleurs analogiquement à (2) :

$$c = k \log \cot \frac{\gamma}{2};$$

de ces deux expressions de c s'ensuit :

$$\cot \frac{\gamma}{2} = \frac{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta}.$$
 (4)

Avec (4), on a d'une part :

$$\cot \frac{\gamma}{2} + \tan \frac{\gamma}{2} = \frac{\sin(\gamma/2)}{\cos(\gamma/2)} + \frac{\cos(\gamma/2)}{\sin(\gamma/2)} = \frac{\sin^{2}(\gamma/2) + \cos^{2}(\gamma/2)}{\sin(\gamma/2)\cos(\gamma/2)} = \frac{2}{\sin \gamma};$$

et d'autre part :

$$\cot \frac{\gamma}{2} + \tan \frac{\gamma}{2} = \frac{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta} + \frac{\sin \alpha \sin \beta}{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}$$

$$= \frac{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta} + \frac{\sin \alpha \sin \beta \left(1 + \sqrt{1 - \sin^2 \alpha \sin^2 \beta}\right)}{1 - \left(1 - \sin^2 \alpha \sin^2 \beta\right)}$$

$$= \frac{1 - \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta} + \frac{1 + \sqrt{1 - \sin^2 \alpha \sin^2 \beta}}{\sin \alpha \sin \beta} = \frac{2}{\sin \alpha \sin \beta};$$

donc finalement:

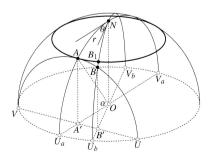
$$\sin \alpha \sin \beta = \sin \gamma. \tag{5}$$

Or, dans la démonstration du théorème 8.1, on a déjà vu que α , β , γ représentent respectivement $\theta(a)$, $\theta(b)$, $\theta(c)$.

10 [▽]Longueur du [▽]cercle

Théorème 10.1. La $^{\triangledown}$ longuer L du $^{\triangledown}$ cercle de rayon r se donne comme :

$$L = k\pi \left(e^{r/k} - e^{-r/k} \right) \quad (k : \text{constante}). \tag{1}$$



Démonstration. Sans perte de généralité, on peut supposer que le $^{\triangledown}$ centre du $^{\triangledown}$ cercle coïncide avec N. Soient A un $^{\triangledown}$ point quelconque vérifiant : $\overline{NA} = r$, et A' le

projeté orthogonal de A sur ε . Soit (U_aV_a) la $^{\triangledown}$ droite qui passe par N et A. On pose que $\angle AOA' = \alpha$. Alors on a :

Eishi Kukita

$$r = \overline{NA} = k \log \left(\frac{U_a N}{V_a N} \cdot \frac{V_a A}{U_a A} \right) = k \log \frac{V_a A}{U_a A} = k \log \cot \frac{\alpha}{2}. \tag{2}$$

Soit (UV) une $^{\triangledown}$ droite $^{\triangledown}$ perpendiculaire à (U_aV_a) qui la croise en A. Soient B un $^{\triangledown}$ point distinct de A sur (UV), et et B' le projeté orthogonal de B sur ε . Soit (U_bV_b) la $^{\triangledown}$ droite qui passe par N et B. Soit θ la mesure de $1'^{\triangledown}$ angle que font (U_aV_a) et (U_bV_b) en N. Alors

$$\overline{AB} = k \log \left(\frac{UA}{VA} \cdot \frac{VB}{UB} \right) = k \log \frac{VB}{UB} = k \log \sqrt{\frac{UV \cdot VB'}{UV \cdot UB'}} = \frac{k}{2} \log \frac{VB'}{UB'}.$$

Les tangentes à (U_aV_a) et (U_bV_b) en N étant toutes deux parallèles à ε , $\angle U_aOU_b = \theta$. Ainsi :

$$\frac{VB'}{UB'} = \frac{VA' + A'B}{U'A - A'B'} = \frac{\sin \alpha + \cos \alpha \tan \theta}{\sin \alpha - \cos \alpha \tan \theta};$$

ce qui fait que :

$$\overline{AB} = \frac{k}{2} \log \frac{\sin \alpha + \cos \alpha \tan \theta}{\sin \alpha - \cos \alpha \tan \theta}.$$

Soit B_1 le point d'intersection du $^{\triangledown}$ cercle en question avec (U_bV_b) . Quand θ s'approche infiniment de 0, B_1 s'approche infiniment de B. De là :

$$\frac{dAB_1}{d\theta} = \frac{dAB}{d\theta}$$

$$= \lim_{\theta \to 0} \frac{k}{2} \left(\frac{1}{\sin \alpha + \cos \alpha \tan \theta} + \frac{1}{\sin \alpha - \cos \alpha \tan \theta} \right) \frac{\cos \alpha}{\cos^2 \theta}$$

$$= k \cdot \frac{\cos \alpha}{\sin \alpha} = k \cdot \frac{\cos^2(\alpha/2) - \sin^2(\alpha/2)}{2\cos(\alpha/2)\sin(\alpha/2)} = \frac{k}{2} \left(\cot \frac{\alpha}{2} - \tan \frac{\alpha}{2} \right).$$
(3)

De (2) et (3) on tire :

$$dAB_1 = \frac{k}{2} \left(e^{r/k} - e^{-r/k} \right) d\theta,$$

et ainsi:

$$L = \int_0^L dA B_1 = \int_0^{2\pi} \frac{k}{2} \left(e^{r/k} - e^{-r/k} \right) d\theta = k\pi \left(e^{r/k} - e^{-r/k} \right).$$

論文要旨

非ユークリッド幾何学の半球面モデル

久木田 英史

鍵語:射影幾何学、非ユークリッド幾何学、平行線公理、モデル、数学史

十七世紀、デザルグが透視図法に想を得て「平行な二直線はそれぞれの直線の双方向の無限遠に位置するある理念的な点で交わる」という公理を要請した時、幾何学は古代ギリシャにおける創始者たちが敢えて回避してきた「無限」という問題圏へと開かれた。その二世紀後、三人の同時代人、ボヤイ、ロバチェフスキー、ガウスはそれぞれ独立に、実在する空間の規定と思念されてきたユークリッド幾何学における「平行線公理」—「与えれた直線と平行で(すなわち無限遠点で交わる)その直線上にない一点を通る直線は、ただ一つだけ存在する」という命題を否定しても、ユークリッド幾何学と同様の合同変換に基づく、無矛盾な体系が構築されることを発見した。本論は「与えれた直線と平行でその直線上にない一点を通る直線が、複数存在する」ような、所謂「双曲幾何学」的「平面」の存在を半球面モデルとして可視化すると共に、「三角形の内角の和は二直角より小さい」など、この「平面」の主要な性質を半球面モデルの定義から導出することを目的とする。